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Abstract

The study of the kinetics of photodecomposition of 2-(5′-nitro-2′-furanyl)ethenyl-4-{N-[4′-(N,N-diethylamino)-1′-methylbutyl] car-
bamoyl} quinoline (Quinifuryl, Q) was studied using steady-state and time resolved absorption spectroscopy. We detected the formation of
the Q triplet state, which is characterized by the absorption maximum at 550 nm, triplet state energyET = 18,200± 500 cm−1 and a decay
constantk0 = 1.8×104 s−1. This triplet state is quenched by Q molecules in its ground state with the constantkq1 = 2.6×108 M−1 s−1 and
by molecular oxygen with the constantkq2 = 2.0 × 109 M−1 s−1. The initial rate of Q photodecomposition under continuous irradiation
by visible light (Vi ) increases when the Q concentration is increased. In air and oxygen saturated solutionsVi is linearly proportional to Q
concentration and does not depend on the O2 concentration. Our kinetic model of the process supposed two ways of Q photodecomposition:
the reaction between Q molecules in triplet and ground states and the photodecomposition directly from the Q singlet excited state.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quinifuryl (Q), 2-(5′-nitro-2′-furanyl)ethenyl-4-{N-[4′-
(N,N-diethylamino)-1′-methylbutyl] carbamoyl} quinoline,
is one of a family of 5-nitrofuran-ethenyl-quinoline drugs
(NFEQ) that was synthesized in the early 1970s by Dr. N.M.
Sukhova (Institute of Organic Synthesis, Latvian Academy
of Sciences, Riga, Latvia) in a search for antitumor agents.
Indeed, these compounds have shown significant toxicity
toward various lines of cancer cells[1]. Q possessed the
highest cytotoxic activity among these compounds[1,2] and
showed radiosensitizing activity in vitro[2]. The compound
is in clinical use as antiseptic for the treatment of wounds
and burns[3].

Due to the presence of the developed system of conju-
gated�-electrons in its structure, Q possesses an intense
optical absorption in the spectral region 350< λ < 450 nm
(ε396nm = 2.47 × 104 M−1 cm−1 at pH 7.0[1,2]). After
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photoirradiation, Q becomes colorless, demonstrating pho-
todecomposition of its chromophore. Recently, we observed
significant increase in toxicity of Q toward various lines of
cancer cells under illumination with light in the above spec-
tral region (manuscript in preparation)[4]. We believe that
this effect is due to the formation of some reactive species in
the course of the Q photodecomposition. However, the de-
tailed mechanism of the compound photodecomposition is
not clear yet. In the present work we report on the study of
the Q photodecomposition in aqueous solutions as a func-
tion of Q and oxygen concentrations.

2. Materials and methods

This Quinifuryl was obtained from Dr. N.M. Sukhova.
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The compound was dissolved in phosphate buffer (5 mM
NaH2PO4+2.5 mM Na2HPO4), pH 6.8, using Mili-Q qual-
ity water and irradiated in the spectral range from 350 to
450 nm using a tungsten lamp (150 W) and a glass filter
(5–57 KOPP color glass filter). A standard quartz 1 cm cu-
vette with water was used as a thermal filter to prevent col-
lateral heat effects. The intensity of irradiation of the sample
was 22 mW cm−2, as measured by a Spectra-Physics 407A
radiometer. The concentration of Q in solutions under irradi-
ation was from 7 to 70�M. The photolysis was performed in
standard quartz cuvettes with optical lengths 2 and 10 mm,
so that the initial absorbance at theλmax = 396 nm was
below 0.35. The optical absorption spectra were monitored
with the DU 650 Beckman spectrophotometer.

The flash-photolysis experiments were performed in a
standard quartz 1 cm cuvette. The Q excited states were pro-
duced by short light pulses (10 ns) of the third harmonic
(355 nm) of Nd:YAG laser SL400 spectron laser system.
The excited state absorption spectra and decay profiles were
monitored in the spectral region 450≤ λ ≤ 750 nm using a
standard registration system.

To study the oxygen effect, the samples were deoxy-
genated by bubbling nitrogen through the solution and for
comparison some samples were deoxygenated with a vac-
uum pump.

All experiments were run at room temperature (24◦C).

3. Results and discussion

The Q absorption spectra at pH 7.0 are presented
on Fig. 1a. Under continuous irradiation in the range
350–450 nm, occurred the photobleaching of Q showing
photodecomposition of its chromophore (Fig. 1a). The

Fig. 1. (a) The absorption spectra of Q aqueous solution as a function of the irradiation time. The concentration [Q]= 1.4 × 10−5 M. (b) Normalized
Quinifuryl absorbance at 396 nm as a function of the irradiation time in air saturated (�) and deairated (�) solutions.

removal of air increased the rate of photodecomposition
(Fig. 1b).

The excitation of deairated Q aqueous solutions by a
laser pulse at 355 nm induces the formation of short-lived Q
species characterized by absorption in the region from 450
to 700 nm with the maximum centered at 550 nm (Fig. 2a)
A short-lived product with a similar spectrum was also ob-
served in dioxane (Fig. 2a). The profile of the decay of this
absorption is mono-exponential (Fig. 2b).

�D = �D0 exp(−k1t) (1)

The decay constantk1 increases with increase of the initial
Q concentration ([Q]i ), demonstrating the quenching of this
excited state by Q in the ground state. Two constants were
determined (Fig. 3) using the following equation:

k1 = k0 + kq1[Q]i (2)

wherek0 = 1.8 × 104 s−1 determined as a limit value at
infinite dilution [Q]i → 0; and the self-quenching constant
kq1 = 2.6 × 108 M−1 s−1.

The observed short-lived species is quenched by molecu-
lar oxygen

k2 = k1 + kq2[O2] (3)

with kq2 = 2.0 × 109 M−1 s−1.
The formation of the triplet excited states from the pho-

toexcitation of nitrofuran derivatives

has been described[5]. The self-quenching and the quench-
ing by molecular oxygen are typical processes for the triplet
states. Thus, we should associate the observed short-lived
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Fig. 2. (a) Normalized Quinifuryl triplet–triplet absorption spectra in water (�) and in dioxane (�) solutions. (b) Decay profiles of the Q triplet state
in the aqueous deaerated solution.

species with excited triplet states of Q. Indeed, the exper-
iments done in dioxane have shown that acceptors of the
triplet energy quench these species; the quenching constant
is dependent on the level of the triplet state energy of accep-
tor (Table 1). The formation of acceptor triplet states due to
the energy transfer from Q triplet state was also observed.
The energy of the Q triplet state determined from these ex-
periments isET = 18200± 500 cm−1.

Fig. 3. The constant of decay of Quinifuryl triplet state (k1) as a function of the Q concentration.

Based on our results, one may consider the scheme of the
Q phototransformations as follows:

(0) Q(S0) + hν → Q∗(S1).

(1) Q∗(S1)
kIC→Q(S0).

(2) Q∗(S1)
kT→Q∗(T1).

(3) Q∗(T1)
k0→Q(S0).
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Table 1
The quenching constants of Quinifuryl triplet state by the triplet energy
acceptors

Compound ET (cm−1) kq × 10−9 (M−1 s−1)

Naphthacene 10250 2.7± 0.4
Azulene 12000 2.5± 0.4
9,10-Dibromoanthracene 14112 1.3± 0.2
Eosine 15000 1.2± 0.2
Acridine orange 17390 2.0± 0.3
1,2-Benzpyrene 18480 (4.2± 0.9) × 10−2

Fluorenone 18860 <10−4

Naphtalene 21300 <10−4

9H-fluorene 23750 <10−4

(4) Q∗(T1) + Q(S0)
kq1→Products 1 (we suppose that this re-

action is partly responsible for Q photodecomposition).

(5) Q∗(T1) + O2
kq2→Q(S0) + O2

∗(1�g) (probably this
quenching is accompanied by the formation of O2
excited state (“singlet oxygen”)).

The kinetic scheme of the process is described by the
following equations:

d[Q(S0)]

dt
= −β + kIC[Q∗(S1)] + (k0 + kq2[O2])[Q∗(T1)]

(4)

d[Q∗(S1)]

dt
= β − (kIC + kT)[Q∗(S1)] (5)

d[Q∗(T1)]

dt
= kT[Q∗(S1)] − (k0 + kq1[Q(S0)]

+ kq2[O2])[Q∗(T1)] (6)

where

β =
(∫ λf

λi

I(λ){1 − exp(−2.3A0)} dλ

)

is a factor which is determined by initial light absorption
in the regionλi = 350 nm ≤ λ ≤ λf = 450 nm, I(λ) is
the intensity of the light,A0 = ε(λ)[Q(S0)]l is the initial
absorbance of the sample.

If A0 is <1 we can write in the first approximation

β = 2.3l[Q(S0)]
∫ λf

λi

I(λ)ε(λ) dλ = β1[Q(S0)] (7)

where

β1 = 2.3l

∫ λf

λi

I(λ)ε(λ) dλ

depends just on the irradiation conditions.
Since the characteristic times of Q photodecomposition

under continuous irradiation are much longer than the life-
times of the excited states Q∗(S1) and Q∗(T1) we should
write
d[Q∗(S1)]

dt
= 0 and

d[Q∗(T1)]

dt
= 0 (8)

Combining (4)–(8) we can write the initial rate of the
photodecomposition as

Vi =
(

d[Q(S0)]

dt

)
t→0

= −β1
kTkq1[Q(S0)]2

(kIC + kT)(k0 + kq1[Q(S0)] + kq2[O2])
(9)

Taking into consideration that in air saturated aqueous
media the oxygen concentration is [O2] ∼= 3 × 10−4 M at
24◦C, we should expect that, at the Q concentration range
7.0 < [Q] < 70.0�M, theVi value in the air saturated solu-
tions should be 12–30 times less than the value in deairated
solutions. However, the observed reduction appeared only
two to six times less. Moreover, in oxygen saturated solu-
tions ([O2 ∼= 1.5 × 10−3 M) we should expect a five-fold
reduction ofVi compared with that in the air saturated so-
lutions, while we actually observed the same value ofVi in
the air and oxygen saturated solutions (Fig. 4).

This discrepancy would be resolved if one supposed that
Q may also be decomposed directly from its singlet excited
state Q∗(S1).

(6) Q∗(S1)
kX→Q(S0)

In this caseEqs. (5) and (9)should be rewritten as

d[Q∗(S1)]

dt
= β − (kIC + kT + kX)[Q∗(S1)] (5a)

Vi =
(

d[Q(S0)]

dt

)
t→0

= − β1

kIC + kT + kX

×
(

kTkq1[Q(S0)]

(k0 + kq1[Q(S0)] + kq2[O2])
+ kX

)
[Q(S0)] (9a)

If kq2[O2] > k0, kq1[Q(S0)] and kX > (kTkq1[Q(S0)]/
kq2[O2]), Vi is independent of [O2]. This situation occurs
both in air and in oxygen saturated solutions. Moreover, in
these solutionsVi should possess a linear dependence on
[Q(S0)]. The experiment confirms this assumption (Fig. 4).

Two ways of phototransformation of nitrocompounds has
been described[6]. The first is direct photoionization with
formation of a hydrated electron, which is, in the conse-
quence, bound to the molecule in the ground state, produc-
ing a nitrogen oxide radical

RNO2 + hν→RNO2
• + eh

•−

RNO2 + eh
•− → RNO2

•−

The second way is electron transfer from an electron
donor to the nitrocompound in its triplet excited state

RNO2
∗(T1) + D → RNO2

•− + D•+

Finally, the nitrogen oxide radical is also produced.
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Fig. 4. The initial rate of Quinifuryl photodecomposition (Vi ) as a function of Q initial concentration ([Q]i ) in air saturated (�) and oxygen saturated
(�) solutions.

We suppose that both ways occur also for the photode-
composition of Q, producing a nitrogen oxide radical. In this
case the Q molecule in the ground state should play the role
of the electron donor in the reaction with the Q∗(T1) state. To
confirm this hypothesis we have performed a series of exper-
iments with electron donors (ascorbic acid, hydroquinone,
1,7-dioxynaphthaline, aniline) and with epinephrine. The re-
sults are to be published soon.
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